Skip to content

Molar refractivity

The Wildman-Crippen molar refractivity (MR) is a physicochemical parameter that provides insights into compounds' molecular size and polarizability. Molar refractivity, in particular, is used as a common descriptor for molecular size and polarizability, which are significant for predicting how a molecule interacts with biological targets and membranes.

Methodology

MolModa uses the method defined by Wildman and Crippen to compute the molar refractivity. This technique involves aggregating the contributions from each atom within a molecule to determine its overall MR value. While MR is not strictly additive due to intramolecular interactions, these interactions can be accommodated by classifying atoms into distinct types based on their attached and neighboring atoms.

Atom classification

The foundational step in computing MR involves an atom classification system. Atoms are classified into different types according to their nearest neighbors, second neighbors, and aromaticity. This process results in a reduced set of atom types, designed to include atoms with similar chemical natures and similar contributions to MR. Ultimately, the classification system encompasses 68 basic atom types, covering elements commonly found in organic molecules (e.g., C, H, N, O, S, P, halogens), metals, and noble gases.

Atom Type Descriptions and Contributions
type descriptions SMARTS MR \(\alpha_i\)
C1 1°, 2° aliphatic [CH4], [CH3]C, [CH2](C)C 2.503
C2 3°, 4° aliphatic [CH](C)(C)C, [C](C)(C)(C)C 2.433
C3 1°, 2° [CH3][(N,O,P,S,F,Cl,Br,I)], [CH3][A#N], [CH2X4][A#N], [CH3][#15], [CH2X4][#15], [CH3][#16], [CH2X4][#16], [CH3][#53], [CH2X4][#53], !([CH2X4]a) 2.753
heteroatom [CH2X4][(N,O,P,S,F,Cl,Br,I)]
C4 3°, 4° [CH1X4][(N,O,P,S,F,Cl,Br,I)], [CHX4][A#N], [CH0X4][A#N], [CHX4][#15], [CH0X4][#15], [CHX4][#16], [CH0X4][#16], [CHX4][#53], !([CH0X4][#53]), !([CHX4]a) or !([CH0X4]a) 2.731
heteroatom [CH0X4][(N,O,P,S,F,Cl,Br,I)]
C5 C = heteroatom [C] = [A#X] 5.007
C6 C = C aliphatic [CH2] = C, [CH1](=C)A, [CH0](=C)(A)A,[C](=C)=C 3.513
C7 acetylene, nitrile [CX2]#A 3.888
C8 1° aromatic carbon [CH3]c 2.464
C9 1° aromatic heteroatom [CH3][a#X] 2.412
C10 2° aromatic [CH2X4]a 2.488
C11 3° aromatic [CHX4]a 2.582
C12 4° aromatic [CH0X4]a 2.576
C13 aromatic heteroatom [cH0]−[!(C,N,O,S,F,Cl,Br,I)], [c][#5], [c][#14], [c][#15], [c][#33], [c][#34], [c][#50], [c][#80] 4.041
C14 aromatic halide [c][#9] 3.257
C15 aromatic halide [c][#17] 3.564
C16 aromatic halide [c][#35] 3.180
C17 aromatic halide [c][#53] 3.104
C18 aromatic [cH] 3.350
C19 aromatic bridgehead [c](:a)(:a):a 4.346
C20 4° aromatic [c](:a)(:a)-a 3.904
C21 4° aromatic [c](:a)(:a)-C 3.509
C22 4° aromatic [c](:a)(:a)-N 4.067
C23 4° aromatic [c](:a)(:a)-O 3.853
C24 4° aromatic [c](:a)(:a)-S 2.673
C25 4° aromatic [c](:a)(:a) = C, [c](:a)(:a) = N, [c](:a)(:a) = O 3.135
C26 C = C aromatic [C](=C)(a)A, [C](=C)(c)a, [CH](= C)a, [C] = c 4.305
C27 aliphatic heteroatom [CX4][!(C,N,O,P,S,F,Cl,Br,I)], [CX4][#X], !([CX4][#N]), [CX4][#16], [CX4][#15], [CX4][#53] 2.693
CS carbon supplemental [#6] not matching any basic C type 3.243
H1 hydrocarbon [#1][#6], [#1][#1] 1.057
H2 alcohol [#1]O[CX4], [#1]Oc, [#1]O[!(C,N,O,S)], [#1][!(C,N,O)], [#1]O[CX4], [#1]Oc, [#1]O[#1], [#1]O[#5], [#1]O[#14], [#1]O[#15], [#1]O[#33], [#1]O[#50], [#1][#5], [#1][#14], [#1][#15], [#1][#16], [#1][#50] 1.395
H3 amine [#1][#7], [#1]O[#7] 0.9627
H4 acid [#1]OC = [#6], [#1]OC = [#7], [#1]OC = O, [#1]OC = S, [#1]OO, [#1]OS 1.805
HS hydrogen supplemental [#1] not matching any basic H type 1.112
N1 1° amine [NH2+0]A 2.262
N2 2° amine [NH+0](A)A 2.173
N3 1° aromatic amine [NH2+0]a 2.827
N4 2° aromatic amine [NH+0](A)a, [NH+0](a)a 3.000
N5 imine [NH+0] = A, [NH+0] = a 1.757
N6 substituted imine [N+0](=A)A, [N+0](=A)a, [N+0](=a)A, [N+0](=a)a 2.428
N7 3° amine [N+0](A)(A)A 1.839
N8 3° aromatic amine [N+0](a)(A)A, [N+0](a)(a)A, [N+0](a)(a)a 2.819
N9 nitrile [N+0]#A 1.725
N10 protonated amine [NH3+*], [NH2+*], [NH+*]
N11 unprotonated aromatic [n+0] 2.202
N12 protonated aromatic [n+*]
N13 4° amine [NH0+*](A)(A)(A)A, [NH0+*](=A)(A)A, [NH0+*](=A)(A)a, [NH0+*](=[#6])=[#7] 0.2604
N14 other ionized nitrogen [N+*]#A, [N−*], [N+*](=[N−*])=N 3.359
NS nitrogen supplemental [#7] not matching any basic N type 2.134
O1 aromatic [o] 1.080
O2 alcohol [OH], [OH2] 0.8238
O3 aliphatic ether [O](C)C, [O](C)[A#X], [O]([A#X])[A#X] 1.085
O4 aromatic ether [O](A)a,[O](a)a 1.182
O5 oxide [O]=[#8], [O]=[#7], [OX1−*][#7] 3.367
O6 oxide [OX1−*][#16] 0.7774
O7 oxide [OX1−*][!(N,S)], [OX1−*][#15], [OX1−*][#33], [OX1−*][#43], [OX1−*][#53] 0.000
O8 aromatic carbonyl [O]=c 3.135
O9 carbonyl aliphatic [O]=[CH]C, [O]=C(C)C, [O]=C(C)[A#X],[O]=[CH]N, [O]=[CH]O,[O]=[CH2], [O]=[CX2]=O 0.000
O10 carbonyl aromatic [O]=[CH]c, [O]=C(C)c, [O]=C(c)c, [O]=C(c)[a#X], [O]=C(c)[A#X], [O]=C(C)[a#X] 0.2215
O11 carbonyl heteroatom [O]=C([A#X])[A#X], [O]=C([A#X])[a#X], [O]=C([a#X])[a#X] 0.3890
O12 acid [O−1]C(=O)
OS oxygen supplemental [#8] not matching any basic O type 0.6865
F fluorine [#9−0] 1.108
Cl chlorine [#17−0] 5.853
Br bromine [#35−0] 8.927
I iodine [#53−0] 14.02
Hal ionic halogens [#9−*], [#17−*], [#35−*], [#53−*], [#53+*]
P phosphorous [#15] 6.920
S1 aliphatic [S−0] 7.591
S2 ionic sulfur [S−*], [S+*] 7.365
S3 aromatic [s] 6.691
Me1 B, Si, Ga, Ge, As, Se, Sn, Te, Pb, Ne, Ar, Kr, Xe, Rn 5.754
Me2 Fe, Cu, Zn, Tc, Cd, Pt, Au,Hg`

These SMARTS strings are based on v1988.10 Molecular Operating Environment (MOE).

Reproduced from Wildman and Crippen [^wildman1999prediction].

Calculation

Once the atoms in a molecule are classified, the MR is calculated as the sum of the contributions of each atom type present in the molecule. The formula for the calculation is as follows:

\[ \text{MR}_{\text{calc}} = \sum_{i} n_{i} \alpha_{i} \]
  • \( n_{i} \) represents the number of atoms of type \( i \) present in the molecule.
  • \( \alpha_{i} \) is the contribution to MR of atoms of type \( i \).

This equation is derived from the understanding that a molecule's MR can be approximated by summing the individual contributions of its constituent atoms, with each atom type having a unique contribution value based on its chemical environment.